Can Feminist Robots Challenge Our Biases? - IEEE Spectrum



Advertisement
Katie Winkle/KTH Royal Institute of Technology and Stockholm University

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Have you ever noticed how nice Alexa, Siri and Google Assistant are? How patient, and accommodating? Even a barrage of profanity-laden abuse might result in nothing more than a very evenly-toned and calmly spoken 'I won't respond to that'. This subservient persona, combined with the implicit (or sometimes explicit) gendering of these systems has received a lot of criticism in recent years. UNESCO's 2019 report 'I'd Blush if I Could' drew particular attention to how systems like Alexa and Siri risk propagating stereotypes about women (and specifically women in technology) that no doubt reflect but also might be partially responsible for the gender divide in digital skills.

As noted by the UNESCO report, justification for gendering these systems has traditionally revolved around the fact that it's hard to create anything gender neutral, and academic studies suggesting users prefer a female voice. In an attempt to demonstrate how we might embrace the gendering, but not the stereotyping, myself and colleagues at the KTH Royal Institute of Technology and Stockholm University in Sweden set out to experimentally investigate whether an ostensibly female robot that calls out or fights back against sexist and abusive comments would actually prove to be more credible and more appealing than one which responded with the typical 'I won't respond to that' or, worse, 'I'm sorry you feel that way'.

Keep Reading ↓
About the author
Katie Winkle
is a Digital Futures Postdoctoral Research Fellow at KTH Royal Institute of Technology in Sweden. After originally studying to be a mechanical engineer, Katie undertook a PhD in Robotics at the Bristol Robotics Laboratory in the UK, where her research focused on the expert-informed design and automation of socially assistive robots. Her research interests cover participatory, human-in-the-loop technical development of social robots as well as the impact of such robots on human behavior and society.
Reader responsesThe Conversation (3)
Add comment...
Sort by
Kevin Kemper6 Nov, 2021
IEEE MEMBERM

Shout out to the artist Lynn Hershman for (in my opinion) being one of the first to point out the issues with technology and feminism.

Michele Holly5 Nov, 2021
INDV

I guess what I'm asking is, why are you testing gender biases using only one gender of robot?

Michele Holly5 Nov, 2021
INDV

I remember hearing that 'audiences respond better to female voices' back in the 1960's. Were those audiences all male, or 50% female? Were female audiences back in the 1960's completely gender unbiased? Just curious.

​​Why the World’s Militaries Are Embracing 5G

To fight on tomorrow's more complicated battlefields, militaries must adapt commercial technologies

11 Nov 2021
15 min read

In August 2021, engineers from Lockheed and the U.S. Army demonstrated a flying 5G network, with base stations installed on multicopters, at the U.S. Army's Ground Vehicle Systems Center, in Michigan. Driverless military vehicles followed a human-driven truck at up to 50 kilometers per hour. Powerful processors on the multicopters shared the processing and communications chores needed to keep the vehicles in line.

Lockheed Martin

It's 2035, and the sun beats down on a vast desert coastline. A fighter jet takes off accompanied by four unpiloted aerial vehicles (UAVs) on a mission of reconnaissance and air support. A dozen special forces soldiers have moved into a town in hostile territory, to identify targets for an air strike on a weapons cache. Commanders need live visual evidence to correctly identify the targets for the strike and to minimize damage to surrounding buildings. The problem is that enemy jamming has blacked out the team's typical radio-frequency bands around the cache. Conventional, civilian bands are a no-go because they'd give away the team's position.

As the fighter jet and its automated wingmen cross into hostile territory, they are already sweeping the ground below with radio-frequency, infrared, and optical sensors to identify potential threats. On a helmet-mounted visor display, the pilot views icons on a map showing the movements of antiaircraft batteries and RF jammers, as well as the special forces and the locations of allied and enemy troops.

Keep Reading ↓